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Asymptotic Expansions for a Class of 
Elliptic Difference Schemes* 

By Goiran Starius 

Abstact. In this paper, we derive an asymptotic expansion of the global error for Kreiss' 
difference scheme for the Dirichlet problem for Poisson's equation. This scheme, combined 
with a deferred correction procedure or the Richardson extrapolation technique, yields a 
method of accuracy at least 0(h6-5) in L2, where h is the mesh length. 

1. Introduction. In Section 2 of this paper we consider a family of difference 
schemes for the Dirichlet problem for Poisson's equation in n dimensions. The 
schemes are based on the standard (2n + 1)-point formula combined with poly- 
nomial extrapolation formulas of high degree, k say, at the boundary. Kreiss has 
developed an interesting method for proving the convergence of schemes of this 
kind, by reducing the stability investigations to one-dimensional problems. In a 
recent paper by Pereyra, Proskurowski, and Widlund [2], the stability has been 
proved, for 1 < k < 6, by using Kreiss' method. In the paper [2], it is also proved 
that, for k = 6, there exists an asymptotic expansion of the global error of the form 

v = u + h2e2 + h4e4 + rh, IrhII2 = 0(h55), 

where v and u are the solutions to the discrete and the continuous problems, 
respectively, h is the mesh length, e2 and e4 are smooth functions independent of h, 
and 11 * 112 is the usual discrete n-dimensional L2-norm. The main result of Section 2 
is the following extension of the above expansion 

(1. 1) v = u + h2e2+ h4e4+ h6e6 + rhI 11rh 112 = 0(h6-5), 

which is obtained by a refined stability investigation with respect to the inhomoge- 
neous term in the boundary condition. By using three or four different mesh 
lengths, (1.1) guarantees that we get an error of order 0(h6) or 0(h65), respectively, 
by the Richardson extrapolation method. A deferred correction method is very 
likely less costly to use since it only requires one mesh length; see [1]. For a 
description of the latter method and for several numerical experiments see [2]. 

Finally, we point out that the kind of meshes used in this paper are not suitable 
for Neumann problems, for which we instead suggest the use of composite mesh 
methods; see [3] and [4]. 

2. An Asymptotic Expansion of the Global Error for Kreiss' Method. We begin 
this section with a brief account of Kreiss' difference scheme for the Dirichlet 
problem for Poisson's equation. Almost the same notations will be used as in [2], 
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where also a more thorough description of the method can be found. The 
continuous problem is denoted by 

n 

- 
2 S//aX2 = f(x), xE 

(2.1) i=1 
u(x) = g(x), x E 

where the region Q is an open, bounded subset of the n-dimensional, real 
Euclidean space Rn with the smooth boundary aQ. The smoothness requirements 
needed for the solution will be apparent later. 

A uniform grid R,n is defined by 

Rn= {x E Rn I xi = x(?) + nh, ni = 0, 1, ?2,..., 

where h > 0 is the mesh length and (x(?), x&0, . . , xn?j)) is a fixed point in Rn. Let 
O h= n Rhn and define Q* to be the set of gridpoints x E Oh such that at least 
one of the points x ? he, i = 1, 2, . . ., n, is not inQh, where the vector e* is the 
unit vector in the direction of the positive ith coordinate axis. The points in Q* are 
called irregular gridpoints. For each x E Qh, we initially apply the second-order 
difference approximation 

n 

(2.2) 2nv(x) - 2 (v(x - hei) + v(x + he)) = hIf(x). 

For an irregular gridpoint x, this formula is modified in the following way. Assume 
that x - he,i Q 2h. Then v(x - hei) shall be eliminated from (2.2) by using a 
polynomial extrapolation formula of a fixed degree k 

k 1 
-v(x -he,) = 28 j3v(x + h(j - l)e) --g(x*) 

1=1 ao 
(2.3) +1= (iyJ_S()k j=I12,..k, 

ao= (1-s)(2-s)(3-s) ... (k-s)/k!, 

where x* is the intersection of agi and the line segment between x - he, and x and 
hence x* = x - he* + shei, where 0 < s < 1. It is now easily seen that the coeffi- 
cient matrix A of the difference scheme can be written as 

n 

A= 2 PiTA P, 
i=1 

where the matrices Ai correspond to diffrences in the ith coordinate direction and 
are the direct sum of matrices of the form 

(2 + 1) (-1 + 82) 183, ...* * *1k 

-1 2 -1... 
0 -1 2 

...2 -1 0 
... -1 2 -1 
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The matrices P, are permutation matrices corresponding to different orderings of 
the gridpoints. 

In [2] it was proved that, for 1 < k < 6, there is a constant C, independent of h, 
such that 

(2.4) w TBW > Ch2/ (diameter())2* w TW, 

for all vectors w with dimension equal to the order of B. Since Ai is a direct sum of 
matrices of the type B, it immediately follows that (2.4) is valid with B replaced by 

Ai. It also immediately follows that 

(2.5) v TAv > nCh2/ (diameter())2* v TV, 

for all vectors v, which implies that 

(2.6) IIA -'II < (diameter(Q))2 (2.6) ~~~~~~nCh2 
where the spectral matrix norm has been used. By using this estimate it was proved 
in [2] that 

v = u + h2e2 + h4e4 + rh, 

(2.7) 11rhII2 = (XE Irh(x)I2hn) < 0(h55), 
XEgh 

where e2 and e4 are smooth functions independent of h. In order to get a more 
complete asymptotic expansion for the global error, we need a sharper stability 
result, with respect to the inhomogeneous term in the boundary condition, than the 
one that follows from (2.6). 

Let [9*] denote the set of grid functions y defined on Oh with y(x) = 0 for 
x W Q'. We shall now prove that, for 1 < k < 6, there is a constant C1, indepen- 
dent of h, such that 

(2.8) v TAv > nC1h/diameter(Q) * v Tv, for Av = y E[Qhi]. 

From this estimate it immediately follows that 

(2.9) IIA-lyll < diameter(Q)/(nCjh)- IIyII, y E[Q*]. 

We shall now prove (2.8) by first proving a similar inequality for the matrices of 
the type B. Let us consider the system of linear equations 

golato 
0 

(2.10) Bw= 

0 

which is a discretization of the one-dimensional problem -z" = 0, z(O) = go, 
z(a) = gN, where a is a positive constant and z(x) = go(a - x)/a + gNx/a. Let us 
introduce the gridpoints xv = xo + Ph, v = 0, 1, 2, . . . , N + 1, where N is the 
order of the matrix B. Further - = sh and xN+I - a = Ah, where s and s are 
the quantities appearing in a0 and c&o, respectively. The system (2.10) can now be 
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written as 

-w,-I + 2w, -w,+ = 0, v = 1, 2,.. ., N, 
k 1 k 1 

-WO = Aiw,- go, -wNv+ I = 2 ,B>WNv+ I -y--N.v 
j=1 a j=1 ao 

Since z is a linear function, w, = z(x,), for k > 1, i.e. 

(2.11) WV = go(a - x,)/a + gNx1/a. 
From (2.10) and from the above expression for w,, we get 

aw TBw = g0 )9 _ 
ao aO ao aO 

> g2 a -1 x (x1 + axN\xN 2( XN x1 (x ax-N x 

'~~ao 2\ao a0o 
N a0 2 ao a0o/ 

Since a - x1 > (N - 1)h, xN > (N - I)h, x1 = (1 - s)h, and a - xN = (1 -s)h 
and further 0 < a0, ao < 1, aO/(1 - s) > 1 /k, and &O/(1 - &)> 1 /k, we get 

(2.12) wTBw > (N - I)h - kh (g + g2 ). a +9 

Let us now consider the quantity w Tw which, according to (2.1 1), can be written as 

w Tw h(g (ax )h + 2gogN h + N 

h (^-= a )=Il a a )(a 
< 2ma( a x, )2hh () ))()g0 + gN2) 

2((N +Ih32 2) 
3a2h (~ig) 

By using (2.12) and the above inequality, we easily get 

wTBw > 3h(1 -(k + 2)/ (N + 1))/ (2a) * wTw, 
where we also have used that (N + I)h > a. For later references we write this 
inequality as 

(2.13) wTBw > hCI/diameter(Q) *wTw, C1 = 3/ (2(k + 3)), N > k + 1. 
Note that (2.13) is valid only for w satisfying (2.10). The inequality (2.8) can now 
be obtained in the same way as (2.5). 

Let us for functionsy E [Q * ] define the following n - 1-dimensional L2-norm 

1/2 
IY12 = y(x)12hn-I1 

x E-S a 

We can now write (2.9) in the following way 

(2.14) Av = y E [h* ] I 11 V12 < diameter(Q)/ (nC 1h I) Y 12, 
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where 11 * 112 is the norm defined in (2.7). For later use we also write down the local 
truncation error to the extrapolation formula (2.3) 

(2.15) ( 1) shk+ IU(k+ 1) 
k + 1Ih+u(+) 

We shall now derive the improved version of the asymptotic expansion of the 
global discretization error and consider for definiteness the case k = 6. We make 
the Ansatz 

v = u + h2e2 + h4e4 + h6e6 + rh, 

where e2, e4, and e6 are smooth functions, independent of h, satisfying the 
boundary condition e, = 0, on M, t = 2, 4, 6. We shall prove that IIrh 112 = 0(h65). 
For the solution u of (2.1), we have 

(2.16) Au = h2f + G + h414(u) + h616(u) + h818(u) + O(h7)GI + 0(h4), 

where the 1, are differential operators of order t with constant coefficients, t = 2, 4, 
6, and 8, G and 0(h7)G, belong to [Qh*] and correspond to the inhomogeneous 
boundary condition and to (2.15), respectively. We note that the difference scheme 
is given by Av = hf + G and further that 

(2.17) Ae, = h2Le, + h414(e,) + h616(e,) + 0(h7), t = 2, 4, 6, 

where L is the differential operator defined in (2.1). By multiplying the Ansatz for v 
by A and by using (2.16) and (2.17), we get that 

3 
Av = Au + E h2tAe2, + Arh 

t=1 

= h2f + G + h414(u) + h616(u) + h818(u) + 0(h7)G, + 0(h9) 

+h4Le2 + h614(e2) + h816(e2) + 0(h9) + h6Le4 + h814(e4) 

+ 0(h 0) + h8Le6 + 0(h 0) + Arh = h2f + G. 

By determining e2, e4, and e6 by 

Le2 + 14(u) = O, Le4 + 14(e2) + 16(u) = 0, 

Le6 + 14(e4) + 16(e2) + 18(u) = O, e, = 0 on ag, t = 2, 4,6, 

we get 

Ar, = -GIO(h7) + 0(h9). 

Since G1 E [Qh*] and I G,12 = 0(1), it follows from (2.14) and (2.6) that 

(2.18) IIrhII2 = 0(h6 5), 

which is the main result of this paper. 
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